
Fluid Tool - Product Description 
 

William Scherlis, Carnegie Mellon University, Feb 28, 2005 
 
What is it? The Fluid Tool provides the working developer with a means to detect potential race 
conditions in Java programs and assure their absence.  The Tool is integrated into the widely 
adopted Eclipse development environment.  It is intended for use by individual developers 
actively evolving a Java code base, by software teams with build and configuration server, or by 
acceptance evaluators assessing code developed by others. 
 
Features: The Fluid Tool is distinguished from other source-code analysis tools in four ways: (1) 
It provides positive assurance, in the sense that there are no false negatives—Fluid is able to 
assert an absence of errors with respect to a given model. (2) It addresses the hardest errors—the 
errors that defy conventional testing and inspection. The current version of the tool provides 
positive assurances for Java race conditions and a number of other critical dependability error 
types. These types of errors may be manifest in code at locations far from the actual enabling 
fault sites. Additionally, these errors may be intermittent and infeasible to replicate. (3) The tool 
enables developers to express critical design intent not expressible directly in code, for example, 
which locks protect which data. (4) The tool does not give false positives. This is due to the use 
of explicit design intent. Declarations of design intent are very simple—mostly one line javadoc-
style annotations interspersed in program text.  The tool uses a hybrid suite of composable static 
analyses to assess consistency of the code and the models expressed using these program 
annotations. 
 
Benefits: The Fluid Tool provides static assurances for critical multi-threading properties that are 
difficult or impossible to assess using traditional testing, inspection, and runtime checking 
techniques. The analyses provide both “good news” and “bad news”—the tool can provide static 
assurance of absence of race conditions (with respect to models provided) as well as to detect 
potential races or other dangerous conditions in the code.  As a developer evolves a system, the 
tool will track consistency of model and code in an ongoing fashion. It also detects potentially 
dangerous conditions such as lock-protected references to shared state that may not itself be 
protected.  (This is usually repaired by extending the declaration of design intent to indicate that 
the lock is meant to protect the delegate object.  The tool then automatically analyzes whether 
there are any potential "leaking" references to that object.) 
 
Successes: The Tool has been experimentally applied to a wide range of at-scale Java production 
systems and components in aerospace, government, and top-10 software vendors. In virtually 
every case, including widely used library code, it has found faults that can trigger race errors (not 
false positives). The suggested corrections passed the internal vendor regression test suites. At 
multiple sites, suggestions were made by developers and first-line managers that the design intent 
notation be adopted on an ongoing basis for documenting concurrency-related design intent. 
Additionally, in several of these case studies, the Fluid team was able to rapidly locate faults that 
had eluded intense bug-finding effort. In one case, the tool located a fault that had been the target 
of an active search by the development team over a period of several weeks prior to the case 
study engagement. As developers made corrective changes to the code, the Tool supported a 
process of rapid iteration to experiment with adjustments to both code and model in order to 
achieve consistency. 
 
Contexts in which it is best used: The Fluid Tool is robust and scalable, and has been applied to 
Java systems at a scale of several hundred KLOC. It works most effectively on systems that are 



decomposed into subsystems—this allows for more rapid iteration of analysis. Code must build in 
the host tool environment (currently Eclipse) before it can be analyzed. Extensive or global use of 
meta-linguistic features such as reflection and highly specialized loaders may be problematic. The 
tool presently supports analyses for lock-based concurrency and non-lock concurrency, in which 
state is protected through policies that regulate which threads can touch which data (e.g., safe use 
of a GUI redraw thread). The non-lock concurrency analyses also apply to realtime threading 
policies, for example, statically assuring that no-heap threads respect policies. Additional error 
types are being added, and it is possible to develop specialized analyses, though that requires a 
more strategic engagement. The experience of the several case study engagements already 
accomplished indicates that an early “diagnostic” collaboration of one to three days that brings 
Fluid team members together with developer/users is the most effective way to initiate use.  
 
Compare with alternate known products or technologies.  There are several categories of 
technologies with which Fluid can be compared:  
 
(1) Testing tools.  For many categories of faults and errors, test tools can be extremely effective 
in reducing defects. But when systems are non-deterministic and asynchronous, errors can be 
intermittent and infrequent, and even then manifest only due to particular combinations of 
simultaneous stimuli. In these cases, testing is unlikely to be a successful approach to identifying 
the faults that lead to intermittent errors such as races and deadlocks. Additionally, testing cannot 
generally be used to identify inappropriate access to critical state in a system, because the kind of 
alias analysis required yields a result of universal character.  
 
(2) Inspection, including tool-assisted inspection.  Inspection is effective in assessing design and 
local code manifestations, such as pattern compliance. The errors addressed by Fluid, however, 
tend to have a distributed and often global character. Error manifestations may be far from the 
enabling fault sites.  Additionally, code inspection is unlikely to juxtapose multiple code 
segments to reveal an inconsistency in intent (e.g., which lock should be used) when the intent is 
not expressed directly by developers.   
 
(3) Model checking tools. Model checking is an exceptionally powerful technology that can 
detect many kinds of concurrency errors, but in the current state of the art scalability is a major 
challenge, as is the modeling of design intent. Scalability is elusive because it is still a research 
problem to compose assurance results, which is a key to the scalability of Fluid.  Model checking 
can yield a positive assurance (i.e., a guarantee of no false negatives) only for certain categories 
of models and systems.  
 
(4) Rule-based bug finding tools. Many rule-based bug finding tools match a library of patterns 
against the syntactic structure of code, as represented by abstract syntax trees. Some augment this 
by static analyses of various kinds, ranging from binding and typing to more sophisticated 
analyses. But in general these tools yield false positives because design intent is guessed and the 
analyses are imprecise. Fluid increases precision due to a combination of design intent, the use of 
composition and cut-points in analysis, and an aggressive specialization and hybridization of the 
analyses used to achieve the overall aggregate assurances. Rule-based tools generally also yield 
false negatives, for the same reason.  
 
(5) Specialized analysis tools.  There are several specialized analysis tools in the market, 
particularly for C and C++, that address language-specific issues related to storage safety, type 
safety, and respect for encapsulation. There are some emerging analysis tools for Java.  
 



(6) Program verification systems. Program verification has been a research topic for nearly 40 
years (dating back to Floyd’s landmark paper), and is useful for very small and highly critical 
code components.  Unfortunately, scalability has continued to elude verification approaches 
based on traditional program assertions and general-purpose theorem proving. Some 
“compromise” approaches have been developed (e.g., ESC/Java) that focus on particular 
characteristics such as array bounds and other code-safety issues. These approaches can operate at 
greater scale and on existing code bases, but they require extensive program annotation with pre- 
and post-conditions and invariants before analysis results are forthcoming. Fluid focuses on error 
types that do not require this kind of extensive a priori modeling.  
 
(7) Dynamic (runtime) monitoring. Runtime monitoring is a useful technique to detect certain 
categories of errors at runtime. The technique has the advantage of detecting errors, and so 
allowing for remediation and recovery. Indeed, this is part of the idea of “self-healing 
architectures,” in which pervasive logging and auditing supports rapid detection of anomalies. 
Certain kinds of errors cannot easily be detected at runtime, however, without radical redesign of 
a system. For example, inappropriate aliasing can often be detected only at great expense 
(reference counting). Certain kinds of races may not be detectable at all.  
 
Finally, we note that the present version of Fluid supports Java only, while there are many tools 
in the market that support C and C++.  
 
What will a successful collaboration look like? 
 

What will the technology provider do? We propose a pattern of engagement that has an 
initial phase of collaboration between the engineering organization and the Fluid team, followed 
by more independent use by the engineering organization with ongoing technical support from 
the Fluid team. The Fluid team will collaborate with engineering organizations developing or 
maintaining Java code.  Generally speaking, a direct or closely coordinated collaboration for an 
initial period of two to four days is the most effective start. During this collaboration, some initial 
modeling is accomplished, races may be found, and assurances provided. This provides in situ 
tool training to a number of members of the engineering organization.  The Fluid team then 
provides a moderate level of usage support and periodic enhancements. 
 

What should the development team do? The NASA development team should 
communicate with the Fluid team to assess suitability and needs.  The NASA development team 
should appoint one or two members to serve as principal technical liaisons with the Fluid team.  It 
is desirable, but not necessary, for the NASA development team to partition large Java system 
into a set of subsystems of about 50-100KLOC each. This will enable a more rapid iteration cycle 
on code development, modeling, and analysis. An ideal development organization will already be 
familiar with Eclipse (www.eclipse.org).  If not, the subsystems to be analyzed need to be able to 
be built in Eclipse.  (We have not experienced any major problems in this regard—Eclipse 
supports many build tools and patterns, including ant and gmake.)  It is expected that Fluid will 
be deployed on other development platforms, depending on demand. Finally, the development 
team should provide feedback to the Fluid team regarding usability, coverage, features, etc. 

 
How will the technology provider work together with the development team to 

ensure a successful collaboration? The Fluid team will support an initial intensive period 
(typically a couple of days) of collaboration.  This will assure that the tool can be integrated into 
the development environment, that the Java subsystems of interest can build, and that models can 
be defined for critical attributes.  
 


